Compare commits

...

37 Commits

Author SHA1 Message Date
5801eaa82a update cm6 2022-06-23 10:02:17 +02:00
dfd38e4c25 update lien td7 2022-06-20 15:17:25 +02:00
cc8263a60b update lien VM TD7 2022-06-19 09:01:43 +02:00
1bad2da1cb update cm5 2022-06-19 08:59:27 +02:00
4e25261387 maj td6 mail 2022-06-14 09:58:05 +02:00
f23fddf8f2 update cm mail 2022-06-09 11:00:48 +02:00
3bfe23cb8d update td5 dns 2022-06-06 10:05:36 +02:00
2c7c614619 update td4 2022-06-03 11:56:44 +02:00
2d92e9d552 update td apache 2022-06-03 11:41:41 +02:00
dcc8573869 update cm dns 2022-06-03 08:39:50 +02:00
1a30284a72 fix td3-code link 2022-06-02 11:56:21 +02:00
e5c48fc2dc update td4 2022-05-24 16:30:16 +02:00
e3c146136c update td4 2022-05-24 11:25:33 +02:00
e141c2abed update td3 2022-05-23 15:58:00 +02:00
48cc1fadca update td4 apache 2022-05-23 15:37:57 +02:00
e6fadc25ea passage à milxc 1.4.2pre3 2022-05-20 12:58:21 +02:00
84e269e3ca update cm2 2022-05-20 11:40:27 +02:00
47307f155e mv td8 2022-05-16 15:12:13 +02:00
18adbbfd91 mv td8 2022-05-16 15:12:01 +02:00
5b8df75e08 ajout code td passwords 2022-05-16 15:00:09 +02:00
e20c79d582 cleaning 2022-05-16 14:54:04 +02:00
57a1bac0be cleaning 2022-05-16 14:53:15 +02:00
03232cb192 update vm milxc 2022-05-13 13:22:33 +02:00
0ac1aa7689 update td1 2022-05-06 15:49:01 +02:00
dabf5a27f7 bootstrap m3102 A 2022-05-06 11:51:21 +02:00
5052a60465 Merge branch 'master' of ssh://git.kaz.bzh:2202/francois.lesueur/M3102 2022-05-05 13:39:02 +02:00
68ca6ebbc3 bootstrap A 2022-05-05 13:36:29 +02:00
29630e31b9 ajout figure tcpipguide pour dns 2022-04-12 22:46:39 +02:00
7be5140ddb ajout td6 2021-12-03 14:33:25 +01:00
01733524bb ajout cm6 2021-12-03 14:32:21 +01:00
8881d6a968 ajout td5.1 archi 2021-11-29 12:33:02 +01:00
299ed3a581 ajout td5.1 archi 2021-11-28 20:40:14 +01:00
45ec26ce0f ajout td5.1 archi 2021-11-28 20:38:05 +01:00
74f52d0851 ajout td5.1 archi 2021-11-28 10:23:59 +01:00
33f78e044b ajout cm5-archi 2021-11-26 12:19:29 +01:00
d5a15ffeea ajout cm5-archi 2021-11-26 12:18:05 +01:00
ae004b5207 ajout option pandoc 2021-11-26 11:15:50 +01:00
18 changed files with 1215 additions and 57 deletions

View File

@ -16,12 +16,10 @@ $(OUTDIR):
mkdir $(OUTDIR)
$(OUTDIR)/%.html: %.md $(OUTDIR)
pandoc $< -o $@ -s
pandoc --from=markdown+lists_without_preceding_blankline $< -o $@ -s
$(OUTDIR)/%.pdf: $(OUTDIR)/%.html
wkhtmltopdf $< $@
clean:
\rm -rf *.html *.pdf $(OUTDIR)

View File

@ -4,36 +4,41 @@ _François Lesueur ([francois.lesueur@univ-ubs.fr](mailto:francois.lesueur@univ-
Cette page recense les séances du module M3102 "Services réseaux". L'objectif est d'expliquer le fonctionnement d'Internet en tant que réseau de réseaux, Internet est donc notamment l'union des systèmes d'information de tous les acteurs. Séance après séance, vous allez créer un SI minimal (DNS, HTTP, Mail, etc.) interconnectable avec le reste du monde et ainsi constater qu'Internet est le résultat de chaque acteur/AS qui offre et consomme des services.
Ce module se situe entre M2102 (Couches OSI, de la modulation à IP, avec un peu de routage/adressage IP) et M4101C. Il dure 6 semaines, avec chaque semaine 1 séance de cours (1h30) et 2 séances de TD (2*1h30) (attention, pour des raisons d'edt, la séance de cours a en fait lieu à la fin de la semaine précédent les TD). Le contenu sera détaillé au fur et à mesure de la période.
Ce module se situe entre M2102 (Couches OSI, de la modulation à IP, avec un peu de routage/adressage IP) et M4101C. Il dure 7 semaines, avec chaque semaine 1 séance de cours (1h30) et 2 séances de TD (2*1h30) (attention, pour des raisons d'edt, la séance de cours a en fait lieu à la fin de la semaine précédent les TD).
Une large part des séances pratiques sera réalisée sur la plateforme MI-LXC (https://github.com/flesueur/mi-lxc), pour laquelle il faudra télécharger une VM Virtualbox **avant** le TD1.1 "Découverte de MI-LXC" : [.ova à télécharger ici](https://filesender.renater.fr/?s=download&token=2f121a18-f94d-45d1-a079-f68229ebdfa9). Il faudra arriver en séance avec Virtualbox installé et le .ova de MI-LXC déjà téléchargé, l'installation et la découverte de la VM seront ensuite le programme de la séance TD1.1.
Une large part des séances pratiques sera réalisée sur la plateforme MI-LXC (https://github.com/flesueur/mi-lxc), pour laquelle il faudra télécharger une VM Virtualbox **avant** le TD1 "Découverte de MI-LXC" : [.ova à télécharger ici](https://flesueur.irisa.fr/mi-lxc/images/milxc-debian-amd64-1.4.2pre3.ova), nous utiliserons la version 1.4.2pre3. Il faudra arriver en séance avec Virtualbox installé et le .ova de MI-LXC déjà téléchargé, l'installation et la découverte de la VM seront ensuite le programme de la séance TD1.
## Programme
* S1 :
* S19 :
* [CM1](cm1.md) Introduction "C'est quoi internet ?" et panorama du cours
* [TD1.1](td1.1-milxc.md) Découverte MI-LXC
<!-- * [TD1.2](td1.2-shell.md) Wargame shell -->
* S2 :
* S20 :
* [TD1](td1-milxc.md) Découverte MI-LXC
* [CM2](cm2-crypto.md) Cryptographie et sécurité des communications (complément en ligne : [Section "Bases de la crypto"](https://github.com/flesueur/csc/blob/master/cours.md#bases-de-la-crypto))
* [TD2.1](td2.1-crypto.md) Cryptographie JdR
* [TD2.2](td2.2-apache.md) Apache/CMS
* S3 :
<!-- * [TD1.2](td1.2-shell.md) Wargame shell -->
* S21/S22 :
* [TD2](td2-crypto.md) Cryptographie JdR
* [TD3](td3-passwords.md) Mots de passe
* S22 :
* [TD4](td4-apache.md) Apache/CMS/Tunnels
* [CM3](cm3-dns.md) DNS (complément en ligne : [S. Bortzmeyer](https://www.iletaitunefoisinternet.fr/post/1-dns-bortzmeyer/))
* [TD3.1](td3.1-dns.md) DNS
<!-- * TD3.2 CA ACME -->
* S4 :
* S23 :
* [TD5](td5-dns.md) DNS
* [CM4](cm4-mail.md) Mail (complément en ligne : [B. Sonntag](https://www.iletaitunefoisinternet.fr/post/7-email-sonntag/))
* [TD4.1](td4.1-mail.md) SMTP, POP, IMAP
* S24 :
* [TD6](td6-mail.md) SMTP, POP, IMAP
* [CM5](cm5-archi.md) Architecture réseau et firewall (complément en ligne : [ANSSI](https://www.ssi.gouv.fr/administration/guide/definition-dune-architecture-de-passerelle-dinterconnexion-securisee/) (chapitre 2))
* S25 :
* [TD7](td7-archi.md) Segmentation réseau et IPTables
* [CM6](cm6-wrapup.md) Révisions, questions/réponses
<!-- * TD4.2 SPF, DKIM, Spam, webmail -->
* S5 :
* CM5 Firewall (complément en ligne : [Filtrage et surveillance réseau](https://github.com/flesueur/srs/blob/master/cm3-filtrage.md))
* TD5.1 IPTables
* TD5.2 Architecture réseau
<!-- * S5 :
* [CM5](cm5-archi.md) Architecture réseau et firewall (complément en ligne : [ANSSI](https://www.ssi.gouv.fr/administration/guide/definition-dune-architecture-de-passerelle-dinterconnexion-securisee/) (chapitre 2))
* [TD5.1](td5.1-archi.md) Segmentation réseau et IPTables
* S6 :
* CM6 Révisions, questions/réponses
* TD6.1 Révisions
* [TD6.1](td6.1-tunnels.md) Tunnels et bonus -->
## Pour les curieux

106
attic/td8-tunnels.md Normal file
View File

@ -0,0 +1,106 @@
TD bonus : Tunnels et bonus (3 heures)
====================
_Compte-rendu à préparer et déposer en binôme_
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=2f121a18-f94d-45d1-a079-f68229ebdfa9). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
> Si vous êtes sous Windows et que la VM ne fonctionne pas avec VirtualBox, vous pouvez utiliser à la place VMWare Player. Dans ce cas, il faudra cliquer sur "Retry" lors de l'import puis installer le paquet open-vm-tools-desktop dans la VM pour profiter du redimensionnement automatique du bureau (`apt install open-vm-tools-desktop` dans un shell).
Cheat sheet
===========
Voici un petit résumé des commandes dont vous aurez besoin :
| Commande | Description | Utilisation |
| -------- | ----------- | ----------- |
| print | Génère la cartographie du réseau | ./mi-lxc.py print |
| attach | Permet d'avoir un shell sur une machine | ./mi-lxc.py attach iutva-infra |
| display | Lance un affichage sur la machine cible | ./mi-lxc.py display isp-a-home |
| start | Démarre la plateforme pédagogique | ./mi-lxc.py start |
| stop | Éteint la plateforme pédagogique | ./mi-lxc.py stop |
Rappel: Vous devez être dans le répertoire `/root/mi-lxc/` pour exécuter ces commandes.
Tunnels
=======
* Dans le TP Firewall, vous avez protégé des _ports_ pour prévenir certains usages
* En utilisant des tunnels, vous allez voir comment cacher une connexion (par exemple HTTP) dans une autre connexion (par exemple SSH)
SSH
---
L'outil ssh permet de réaliser des tunnels avec ses options -L (Local) et -R (Remote). Deux exemples :
* `ssh -L 8080:192.168.1.2:80 192.168.2.4`:
* La machine locale ouvre une connexion SSH vers la machine 192.168.2.4
* La machine locale ouvre le port 8080 en écoute
* Tout ce qui entre localement sur ce port 8080 emprunte le tunnel SSH jusqu'à 192.168.2.4 puis la machine 192.168.2.4 route ces paquets vers 192.168.1.2 sur le port 80
* `ssh -R 8080:192.168.1.2:80 192.168.2.4` est symétrique :
* La machine locale ouvre une connexion SSH vers la machine 192.168.2.4
* La machine 192.168.2.4 ouvre le port 8080 en écoute
* Tout ce qui entre sur 192.168.2.4 sur ce port 8080 emprunte le tunnel SSH jusqu'au client SSH puis ce client SSH route ces paquets vers 192.168.1.2 sur le port 80
Vous allez mettre en place deux tunnels SSH, chacun depuis target-dev vers isp-a-home :
* Dans le premier, vous utiliserez -L pour qu'un `curl localhost:8080` exécuté sur target-dev récupère la page sur le serveur web (port 80) de 100.81.0.2 (un site externe dont on aurait souhaité interdire l'accès depuis target)
* Dans le second, vous utiliserez -R pour qu'un `curl localhost:8080` exécuté sur isp-a-home récupère la page sur le serveur web (port 80) de 100.80.0.5 (l'intranet de target)
> Question 1 : Recopiez les commandes ssh exécutées.
> Question 2 : Utilisez Wireshark (avec le filtre ssh ou http) pour afficher les paquets SSH entre target-dev et isp-a-home et les paquets HTTP vers 100.81.0.2 et 100.80.0.5.
Netcat
------
Imaginez que vous êtes le développeur et que vous souhaitez fournir un accès au serveur web interne de prototypage "target-intranet" à un client externe, alors que celui-ci n'est normalement pas accessible de l'externe ! Vous allez créer un tunnel pour contourner la politique de sécurité. Vous disposez pour cela des machines "target-dev" (votre poste de travail interne) et "isp-a-home" (une machine extérieure, à votre domicile).
Nous allons utiliser l'outil `netcat` pour établir un tunnel très simple.
Connectez-vous sur la machine "isp-a-home". Nous allons commencer par éteindre le service _Apache_ en écoute pour libérer le port 80 qui nous sera utile puis nous allons écouter les connexions sur le port HTTP (TCP/80).
```bash
service apache2 stop
while true; do nc -v -l -p 80 -c "nc -l -p 8080"; done
```
Enfin, côté "target-dev", nous mettons en place la connexion sortante vers la machine distante:
```bash
while true; do nc -v 100.120.0.3 80 -c "nc 100.80.0.5 80"; sleep 2; done
```
>Pour rappel :
>* 100.120.0.3 = isp-a-home
>* 100.80.0.5 = target-intranet
Testez avec la machine "isp-a-hacker" que vous pouvez bien accéder au serveur intranet depuis l'externe sans aucun contrôle via l'URL `http://100.120.0.3:8080`
> Question 3 : À l'aide d'un schéma, expliquez ce tunnel.
> Question 4 : Retrouvez-le dans Wireshark
Il est très difficile de bloquer ou même détecter les tunnels (tunnel chiffré par SSH, ou qui mime une apparence de HTTP, etc.)
> Pour la suite, vous pouvez aborder la section de votre choix entre HTTP, Mail et interactions. Expliquez le déroulé de vos actions dans votre compte-rendu.
HTTP
====
* Maintenant que l'on a un DNS, configurez des virtualhosts : [doc apache, partie "Fonctionnement de plusieurs serveurs virtuels par nom sur une seule adresse IP."](http://httpd.apache.org/docs/2.4/fr/vhosts/examples.html), [doc adaptée debian](https://linuxize.com/post/how-to-set-up-apache-virtual-hosts-on-debian-10/). Prenez le temps de comprendre le concept : héberger plusieurs sites sur le même serveur, avec des CNAME (au niveau DNS) distincts pointant au final sur la même IP
* Reprendre le TD2.2 à partir de "PHP"
Le mail
=======
* Les bonus du TD 4.1
* Installez un webmail
Les interactions
================
Faîtes du Wireshark à plusieurs endroits, reprenez en main l'infra générale et expliquez les différents fonctionnements observés :
* Par exemple, montrez un enchaînement DNS-SMTP (recherche du MX distant, puis envoi SMTP)
* Proposez d'autres séquences de protocoles liées à une même action
**Votre compte-rendu doit être déposé sur Moodle en fin de journée au format PDF uniquement, un dépôt par binôme.**

6
cm1.md
View File

@ -20,7 +20,7 @@ Comment est structuré internet ?
Un réseau de réseaux :
* Acentré (pas de chef, pas de décision unique sans consensus des acteurs indépendants, pas de point de défaillance unique (SPOF)). *Est-ce toujours aussi vrai ? De la panne Facebook aux clouds*
* Acentré (**pas de chef, pas de décision unique sans consensus des acteurs indépendants, pas de point de défaillance unique (SPOF)**). *Est-ce toujours aussi vrai ? De la panne Facebook aux clouds*
* Structuré autour de la notion d'AS (systèmes autonomes, environ 100 000) qui forment le découpage de premier niveau
* Chaque AS (exemple : RENATER, Orange) est ensuite sous-divisé en interne
* Les AS s'interconnectent entre eux et le protocole BGP assurent la glu entre ces AS
@ -53,14 +53,12 @@ Panorama du cours
* Un peu de sécurité des communications (crypto)
* Du web (HTTP)
* Du DNS
* De l'autorité de certification
* Du mail
* Du firewall et de l'archi réseau
* De la gestion centralisée ou à distance : DHCP, SSH, Ansible
Les TODO
========
* Venir en TD avec son laptop. Combien faut-il en prévoir en complément ?
* Télécharger l'[ova de MI-LXC](https://filesender.renater.fr/?s=download&token=2ca6036b-49b8-4b4c-93bb-95c5de051400) et installer VirtualBox **avant le premier TD** !
* Télécharger l'[ova de MI-LXC](https://filesender.renater.fr/?s=download&token=adb51140-dae2-4cc6-ba1c-15cd1f91c913) et installer VirtualBox ou VMWare **avant le premier TD** !

View File

@ -5,7 +5,7 @@ CM2 Cryptographie et sécurité des communications - Notes de cours
À la rencontre d'Alice, Bob et Ernest
=====================================
Comment permettre à Alice et Bob de communiquer de manière *sûre* sur un canal *non sûr* ?
Comment permettre à Alice et Bob de communiquer de manière *sûre* sur un canal *non sûr* ? Notion centrale en sécurité/crypto : le **modèle d'attaque**.
* Alice et Bob veulent communiquer, Ernest écoute (attaque passive) ou altère (attaque active) les échanges
* Le medium non sûr :
@ -98,7 +98,7 @@ Exemple : le modèle HTTPS
* nom = nom d'hôte DNS (par exemple www.univ-ubs.fr)
* tiers = une autorité de certification (par exemple Let's Encrypt)
* => On a bien une association entre un nom et une clé, ici certifiée par un tiers
* Le client doit valider la signature de la CA :
* Le client doit valider la signature de la CA, et ainsi vérifier l'association (clé publique, nom) :
* Il lui faut donc vérifier avec la clé publique de la CA
* Les clés publiques des CA reconnues par les clients sont pré-installées dans les navigateurs, pas de magie, il faut une *ancre de confiance* dans le logiciel
@ -106,5 +106,5 @@ Exemple : le modèle HTTPS
Ce qu'on va faire en TD
=======================
* TD2.1 : Crypto asymétrique
* TD3.2 : CA
* TD2 : Crypto asymétrique
* TD3 : Stockage des mots de passe

View File

@ -40,7 +40,7 @@ Les acteurs
Protocole
---------
* UDP, écoute sur le port 53
* Historiquement UDP, écoute sur le port 53. Progressivement TCP également.
* Protocole binaire (et non texte comme HTTP, pas de netcat !)
* Des outils de dialogue : dig, drill, nslookup
@ -129,6 +129,7 @@ La robustesse (résistance + passage à l'échelle)
* Grâce à l'architecture par la redondance des serveurs d'autorité
* Grâce au protocole par le mécanisme de cache
Illustration : [TCP/IP Guide](http://www.tcpipguide.com/free/t_DNSNameResolutionProcess-2.htm)
Les usages autour
=================
@ -139,6 +140,7 @@ Filtrage
* Point de passage quasi-obligé, historiquement en clair et classiquement centralisé chez les FAI
* Au niveau État pour la censure (application de blocage administratif de l'orient à l'occident)
* Au niveau organisation pour limiter l'accès internet des employés
* Attention, ce n'est pas une mesure de sécurité car facile à contourner...
Open resolvers
--------------
@ -158,5 +160,10 @@ DoT / DoH
Ce qu'on va faire en TD
=======================
* TD3.1 DNS
* (TD3.2 CA ACME)
* TD5 DNS
Bonus
=====
https://jvns.ca/blog/2022/05/10/pages-that-didn-t-make-it-into--how-dns-works-/
https://jvns.ca/blog/2022/02/01/a-dns-resolver-in-80-lines-of-go/

View File

@ -127,7 +127,7 @@ SPF
---
* Un domaine possède son infrastructure, ses serveurs SMTP
* Les mails se prétendant d'adresses "@CeDomaine.org" devraient logiquement venir de ces SMTP
* Les mails se prétendant d'adresses "@CeDomaine.org" devraient logiquement venir de ses SMTP
* => Annoncer dans la zone DNS "CeDomaine.org" un enregistrement SPF déclarant les serveurs autorisés à envoyer en son nom
* Le MSA de "CeDomaine.org" doit authentifier ses utilisateurs, s'assurer qu'il n'autorise à envoyer pour ce domaine que les utilisateurs légitimes. On limite ainsi les usurpations et l'usage de notre nom pour des spams
* Quand un MTA tiers reçoit un mail "@CeDomaine.org", il fait une requête DNS :
@ -145,7 +145,7 @@ DKIM
----
* Un domaine possède son infrastructure, ses serveurs SMTP
* Les mails se prétendant d'adresses "@CeDomaine.org" devraient logiquement venir de ces SMTP
* Les mails se prétendant d'adresses "@CeDomaine.org" devraient logiquement venir de ses SMTP
* => Générer une paire de clés cryptographiques, signer avec la clé privée sur ces serveurs, annoncer dans la zone DNS "CeDomaine.org" un enregistrement DKIM déclarant la clé publique autorisée à signer
* Le MSA de "CeDomaine.org" doit authentifier ses utilisateurs, s'assurer qu'il n'autorise à envoyer pour ce domaine que les utilisateurs légitimes. On limite ainsi les usurpations et l'usage de notre nom pour des spams
* Quand un MTA tiers reçoit un mail "@CeDomaine.org", il fait une requête DNS :
@ -194,4 +194,10 @@ Les acteurs
Ce qu'on va faire en TD
=======================
* TD4.1 Mail
* TD6 Mail
Biblio
======
* https://www.learndmarc.com/

189
cm5-archi.md Normal file
View File

@ -0,0 +1,189 @@
CM5 Architecture réseau et firewall - Notes de cours
====================================================
Programme
=========
* L'objectif de la segmentation
* Quelques exemples d'architecture
* Le filtrage par pare-feu
Il était une fois les réseaux à plat
====================================
* Naturellement, comme on l'a fait dans les TD successifs : un subnet, tout le monde dedans !
* Sauf que c'est en fait une mauvaise idée pour plein de raisons...
* On va donc sous-diviser en sous-réseaux au niveau IP
Raisons humaines
----------------
* Un réseau s'administre, donc doit se comprendre
* Le cerveau humain a ses limites (sisi)
* Besoin de cartographier, décomposer pour s'y repérer
* Besoin d'une certaine autonomie/indépendance entre les parties pour maîtriser la gestion de chacune au quotidien
* Sous-division en sous-réseaux logiques au niveau IP
* Par exemple géographiques (bâtiments, services, filiales, ...)
Exemple :
* Partant d'un réseau /16
* public (adresses globales) : 134.214.0.0/16 (allant donc de 134.214.0.0 à 134.214.255.255)
* ou privé (adresses locales) : 192.168.0.0/16 (allant donc de 192.168.0.0 à 192.168.255.255)
* Découpage en
* 255 réseaux /24 : 192.168.0.0/24, 192.168.1.0/24, 192.168.2.0/24, ..., 192.168.255.0/24
* ou 16 réseaux /20 : 192.168.0.0/20, 192.168.16.0/20, 192.168.32.0/20, ... (oui, c'est déjà plus compliqué !)
* ou ...
* _Les séparations sur les octets (les '.'), c'est le plus simple ; mais la notation CIDR permet les frontières plus fines_
Raisons réseau
--------------
* La couche "Liaison", typiquement Ethernet en-dessous d'IP, n'a pas une scalabilité infinie
* Broadcast ARP, tables ARP (hôtes, switchs)
* IP fait aussi du broadcast, sur cette notion de segment Ethernet
* Tout ceci est du trafic réseau "non-métier", coût bande passante et calcul
* Besoin de structurer/factoriser la notion de route avec du routage logique : IP
Exemple :
* Ethernet, adresses MAC hétérogènes, une table complète, non adapté à un grand nombre d'identifiants
* IP, addresses IP homogènes, notion de route unique vers un ensemble de machines, passe à l'échelle du nombre d'identifiants
Raisons sécurité
----------------
* La raison directrice aujourd'hui (à mon sens). Pourquoi ?
* Parce que les autres raisons sont déjà rentrées dans les mœurs
* Parce qu'elle va plus loin et donc, en quelque sorte, inclue les besoins des précédentes
* Parce que je suis biaisé !?
* Limiter la propagation d'une attaque -> Avoir des points de limitation et de contrôle
* Principe du moindre privilège (des utilisateurs, des machines) -> Limiter les accès
* Segmentation fonctionnelle selon les rôles/les besoins de réseau/service des machines
* Et il s'avère que tout ceci se conçoit au niveau IP
* L'objectif est ainsi de brider les possibilités d'un attaquant par les équipements de confiance au niveau réseau
Exemples de "patrons de segmentation"
=====================================
La segmentation va avoir pour but de découper son SI en zones isolées afin de :
* Diminuer la surface d'attaque sur chaque zone
* Une zone est un ensemble homogène (en terme de sensibilité, d'exposition, de type de service, ...)
* Des règles générales limitent l'accessibilité de l'ensemble des machines
* Compliquer le passage d'une zone à l'autre
* Les zones ont des expositions différentes
* Les zones ont des sensibilités différentes
* Souvent, exposition <> sensibilité
* Prévenir la compromission d'une zone sensible à partir d'une zone exposée
* Un bon guide de l'ANSSI [ici](https://www.ssi.gouv.fr/administration/guide/definition-dune-architecture-de-passerelle-dinterconnexion-securisee/).
Modèle historique (**proscrit** mais on le trouve encore...)
------------------------------------------------------------
Modèle périmétrique à 3 zones pour limiter la surface d'attaque (les services/machines exposés) :
* WAN : le monde extérieur
* DMZ : zone tampon, perdable sans mettre en péril le SI, les services très exposés ouverts sur le WAN (exposés => sensibilité la plus faible possible)
* LAN : les services internes, les postes de travail, tout à plat
Flux :
* WAN -> DMZ : spécifiques
* WAN -> LAN : aucun !
* DMZ -> LAN : aucun !
* LAN -> DMZ, DMZ -> WAN : un peu de filtre mais c'est le sens des communications attendues
* (évidemment les réponses passent dans l'autre sens)
Par contre, une fois mis un pied dans le réseau, c'est fini... Ex ransomware ou [Paf TV5Monde](https://www.sstic.org/2017/presentation/2017_cloture/)
Modèle moderne : segmentation
-----------------------------
* Parfois appelé le modèle de l'aéroport (des zones publiques, des contrôles successifs, chaque zone plus sécurisée demande des contrôles supplémentaires)
* Généralisation du concept de DMZ à n segments
* Considérer que l'attaquant est ou sera là, le limiter dans ses actions une fois entré
* Une logique de dissocier l'exposition de la sensibilité (les zones exposées peu sensibles, les zones sensibles peu exposées)
* Un élément de réponse face aux attaques à n sauts, aux ransomwares, ...
Exemple :
* WAN : le monde extérieur
* Des zones de serveurs :
* DMZ externe : les services ouverts sur l'extérieur
* DMZ interne : les services internes
* Des zones de postes de travail, liées aux besoins métiers :
* Des zones très peu privilégiées (secrétariat, compta, DIRECTION)
* Des zones de développeurs (qui déploient du code sur des sites interne par exemple)
* ...
* Une zone de postes particuliers : les administrateurs, très privilégiés, donc on limite au maximum l'exposition (minimum de postes, règles strictes)
Entre chaque paire de zones :
* Limiter les flux
* S'assurer de grader les zones / empêcher les passages vers du plus privilégié
* Toujours ouvert à l'intérieur d'une même zone, pas de contrôle ici.
Vers le zero-trust ?
--------------------
* Trouver le bon compromis entre la maintenabilité (pas trop de zones) et la précision (une zone par machine)
* La mode va vers le zero-trust, mais c'est aujourd'hui plus une philosophie et/ou du marketing qu'une réalité
* Aucun accès par défaut (donc, quelque part, pas de zones), ouverture de chaque flux sur droits spécifiques à chaque fois (SSO+++)
* On imagine vite la complexité de mise en place
* Ex Google
Cas particuliers
----------------
* Authentification centralisée :
* Comment la rendre accessible à la DMZ ? Elle n'est pas perdable et est sensible !
* Proxy ou miroir poussé depuis l'interne
* VPN :
* Chemin WAN -> DMZ externe -> zone interne, c'est mal !
* Vrai casse-tête en particulier avec toutes les ouvertures post-confinement
* Nécessaire, à réfléchir et limiter par utilisateur (un comptable ne doit pas avoir le même accès qu'un développeur)
* Dur !
Quel outillage technique ?
==========================
(V)LAN
------
* LAN (physique) premier élément :
* Un brin réseau Ethernet
* Les LAN sont reliés par des routeurs au niveau IP -> Filtrage !
* La séparation physique est coûteuse et peu souple :
* Un grand LAN unique
* Des VLAN administrés
* Un VLAN spécifié pour chaque prise réseau
* On revient sur la logique du LAN
Pare-feu (_Firewall_)
---------------------
* Ouverture d'une liste de services contrôlés, diminution de la surface d'attaque, matrice de flux
* Couche IP
* Simplification (donc avec perte) : 1 service = 1 port
* Système de règles
* Une règle : (Interface_src, IP_src, Port_src, IP_dst, Port_dst, Interface_dst) (essentiellement)
* Filtre uniquement entre des (V)LAN, lorsque le routage IP doit être fait
* Exemple de règle
* Ex [iptables](https://fr.wikipedia.org/wiki/Iptables)/[nftables](https://fr.wikipedia.org/wiki/Nftables)
Ce qu'on va faire en TD
=======================
* TD7 IPTables, segmentation

42
cm6-wrapup.md Normal file
View File

@ -0,0 +1,42 @@
CM6 Wrap-up + Questions/Réponses - Notes de cours
================================================
Wrap-up
=======
Ce que nous avons vu :
* Internet est un réseau de réseaux autonomes : les AS
* BGP permet d'établir le routage logique entre ces AS :
* Des liens locaux bas-niveau, connexions directes, permettent l'échange des paquets entre voisins. C'est entre ces voisins directs que l'on parle BGP, pour annoncer notre AS ainsi que les AS joignables via nous
* Chaque AS découvre ainsi quels autres préfixes sont joignables en multi-saut
* Le routage annoncé/paramétré via BGP permet d'établir le routage global, au niveau logique, permettant de communiquer avec l'ensemble du réseau IP
* À ce niveau, nous obtenons donc une interconnexion IP globale
* Résilience niveau interconnexion IP : BGP est auto-réparant, une route inaccessible sera immédiatement remplacée par une autre possible, si elle existe (et Internet est conçu de manière maillée)
* DNS permet de nommer les objets sur Internet, typiquement les sites web ou adresses mail, par le système des domaines
* Un système arborescent, disjoint de la hiérarchie des adresses IP
* Une partie "serveurs faisant autorité", qui hébergent chacun le contenu de la zone dont ils sont responsables et répondent aux requêtes sur cette zone
* Une partie "serveurs de résolution/résolveurs", sollicités par les clients, qui vont parcourir les serveurs faisant autorité pour répondre au client
* Résilience niveau service DNS : Les serveurs faisant autorité doivent avoir un miroir (au moins), situé dans un autre AS, si possible très disjoint
* SMTP permet d'échanger des mails entre domaines distincts
* Pour émettre un mail, un client (Thunderbird, webmail, ...) transmet cette tâche à son serveur SMTP (chez son FAI, chez son opérateur de mail, ...)
* Ce serveur SMTP est ensuite responsable de transmettre au serveur SMTP destination
* Les serveurs de réception de `@domain.tld` sont enregistrés en champ MX dans la zone DNS de `domain.tld`
* Le serveur côté réception stocke dans son spool
* Résilience niveau SMTP : Les serveurs émetteurs réessaient pendant quelques jours + Il faut enregistrer plusieurs MX au niveau DNS
* IMAP(/POP) permettent de relever ses mails auprès du serveur
* SMTP est en charge de déposer (enfin presque... mais on va simplifier) sur le serveur responsable de la boîte mail du destinataire
* IMAP permet ensuite la relève par le destinataire
* Résilience niveau IMAP : Moins critique, mais on fera du miroir / des sauvegardes
* Architecture globale et locale
* Globalement, à l'échelle d'internet, on a une architecture physique maillée, distribuée, hétérogène, variée et une architecture logique à plat permettant la connectivité totale
* Localement, à l'échelle d'un SI, on a une architecture physique arborescente, qui remonte souvent vers un (ou deux) points, moins hétérogène, plus structurée et une architecture logique segmentée pour limiter la connectivité interne
* Tous les échanges aujourd'hui sont chiffrés
* Cryptographie hybride : crypto asymétrique + crypto symétrique
* Besoin d'obtenir/valider les clés publiques des interlocuteurs : notion de PKI (autorité de certification, PGP, DANE/TLSA, Keybase, ...)
* Il faut 1/s'assurer que l'on chiffre avec la bonne personne (PKI) et 2/chiffrer
Questions/Réponses
==================
(pour l'instant, je fais semblant de ne pas connaître les questions...)

View File

@ -1,7 +1,9 @@
TD1.1 Découverte MI-LXC
TD1 Découverte MI-LXC
=======================
Ce TP sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=2f121a18-f94d-45d1-a079-f68229ebdfa9). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
Ce TP sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=adb51140-dae2-4cc6-ba1c-15cd1f91c913). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
Pour vous connecter à la VM, utilisez le compte `root` avec le mot de passe `root`.
MI-LXC simule un internet minimaliste que nous utiliserons tout au long de la matière. Ce TD couvre la découverte de l'environnement existant et les premiers éléments qui seront nécessaires pour l'étendre par la suite. Dans la suite de la matière, vous installerez et configurerez un réseau et des services qui s'interconnecteront avec cet existant.
@ -9,8 +11,9 @@ MI-LXC simule un internet minimaliste que nous utiliserons tout au long de la ma
> La VM peut être affichée en plein écran. Si cela ne fonctionne pas, il faut parfois changer la taille de fenêtre manuellement, en tirant dans l'angle inférieur droit, pour que VirtualBox détecte que le redimensionnement automatique est disponible. Il y a une case adéquate (taille d'écran automatique) dans le menu écran qui doit être cochée. Si rien ne marche, c'est parfois en redémarrant la VM que cela peut se déclencher. Mais il *faut* la VM en grand écran.
> Si vous êtes sous Windows et que la VM ne fonctionne pas avec VirtualBox, vous pouvez utiliser à la place VMWare Player. Dans ce cas, il faudra cliquer sur "Retry" lors de l'import puis installer le paquet open-vm-tools-desktop dans la VM pour profiter du redimensionnement automatique du bureau (`apt install open-vm-tools-desktop` dans un shell).
> Si vous êtes sous Windows et que la VM ne fonctionne pas avec VirtualBox, vous pouvez utiliser à la place VMWare Player. Dans ce cas, il faudra cliquer sur "Retry" lors de l'import.
> Le compte-rendu est à déposer en binôme sur Moodle avant mardi 24 mai soir.
Cheat sheet
===========
@ -60,7 +63,7 @@ Toutes les machines ont les deux comptes suivants : debian/debian et root/root (
> Question 3 : Depuis la machine isp-a-home, ouvrez un navigateur pour vous connecter au site web de l'UBS. Cela fonctionne-t-il ? Cette page est-elle hébergée dans l'infrastructure MI-LXC ?
> Question 4 : Ouvrez un shell sur la machine target-dmz (commande attach, donc). Installez le package nano grâce à l'outil `apt` et vérfifiez que vous pouvez maintenant éditer des fichiers avec nano.
> Question 4 : Ouvrez un shell sur la machine target-dmz (commande attach, donc). Installez le package nano grâce à l'outil `apt` et vérifiez que vous pouvez maintenant éditer des fichiers avec nano.
> Dans la VM et sur les machines MI-LXC, vous pouvez donc installer des logiciels supplémentaires. Par défaut, vous avez mousepad pour éditer des fichiers de manière graphique.
@ -126,7 +129,9 @@ Une fois ceci défini, un `./mi-lxc.py print` pour vérifier la topologie, puis
On peut enfin faire un `./mi-lxc.py start` et vérifier le bon démarrage.
> Attention, pour des raisons de gestion des IP et des routes, étonnamment, il n'y a pas de façon simple pour que le routeur puisse lui-même initier des communications. C'est-à-dire que si tout fonctionne bien il sera démarré, aura de bonnes tables de routage, mais pour autant ne pourra pas ping en dehors du subnet du transitaire. C'est le comportement attendu et donc vérifier la connectivité du routeur ne peut pas se faire comme ça. On verra ensuite comment vérifier cela depuis un poste interne et nous utiliserons, sur le routeur ou ses voisins BGP, les commandes `birdc show route all` et `birdc show protocols` pour inspecter les tables de routage et vérifier l'établissement des sessions BGP.
<!-- > Attention, pour des raisons de gestion des IP et des routes, étonnamment, il n'y a pas de façon simple pour que le routeur puisse lui-même initier des communications. C'est-à-dire que si tout fonctionne bien il sera démarré, aura de bonnes tables de routage, mais pour autant ne pourra pas ping en dehors du subnet du transitaire. C'est le comportement attendu et donc vérifier la connectivité du routeur ne peut pas se faire comme ça. On verra ensuite comment vérifier cela depuis un poste interne et nous utiliserons, sur le routeur ou ses voisins BGP, les commandes `birdc show route all` et `birdc show protocols` pour inspecter les tables de routage et vérifier l'établissement des sessions BGP. -->
> Sur le routeur ou ses voisins BGP, les commandes `birdc show route all` et `birdc show protocols` permettent d'inspecter les tables de routage et vérifier l'établissement des sessions BGP.
> Question 5 : Quels ajouts avez-vous fait dans `global.json` ?

View File

@ -1,4 +1,4 @@
TD2.1 : Usage de la cryptographie asymétrique
TD2 : Usage de la cryptographie asymétrique
=============================================
_Pas de compte-rendu pour ce TD_

131
td3-code/skeleton.py Executable file
View File

@ -0,0 +1,131 @@
#!/usr/bin/env python3
import time
import sys
from toolbox import *
# You should tweak these values during the work
nblogins = 10 # would be larger in real-life
nbpasswords = 1000000 # would be larger in real-life
nbiterations = 10 # 10000 is currently recommended, should be adapted to the usecase and changed with time (improvement of computation power), like a key size
############################################
# Part of the script to edit #
############################################
# Hint : you can call decrypt(key,data) to decrypt data using key
def crackencrypted(database):
key = readfile("enckey")[0]
crackeddb = []
for i in database:
# i[0] is the login, i[1] is the encrypted password
#...
crackeddb.append((i[0],i[1])) # second argument should contain cleartext password
return crackeddb
# Hint : - genshahashes(passwords) returns all the hashes of passwords dictionary
# - getpassfromshahash(hashes, hash) returns the password which hashed as "hash" in hashes
def cracksha(database):
global nbpasswords
passwords = getPassDict(nbpasswords) # passwords contains a dictionary of passwords
#...
crackeddb = []
for i in database:
# i[0] is the login, i[1] is the hashed password
#...
crackeddb.append((i[0],i[1])) # second argument should contain cleartext password
return crackeddb
# Hint : salthash(password, salt) return the salted hash of password
def cracksaltedsha(database):
global nbpasswords
passwords = getPassDict(nbpasswords)
crackeddb = []
for i in database:
# i[0] is the login, i[1] is the hashed password, i[2] is the salt
#...
crackeddb.append((i[0],i[1])) # second argument should contain cleartext password
return crackeddb
# Hint : pbkdf2(password, salt, nbiterations) returns the pbkdf2 of password using salt and nbiterations
def crackpbkdf2(database):
global nbpasswords
passwords = getPassDict(nbpasswords)
crackeddb = []
for i in database:
# i[0] is the login, i[1] is the hashed password, i[2] is the salt, i[3] is the iteration count
#...
crackeddb.append((i[0],i[1])) # second argument should contain cleartext password
return crackeddb
############################################
# Nothing to change after this line ! #
############################################
if __name__ == '__main__':
# When called with init
if len(sys.argv) > 1 and sys.argv[1] == "init":
initworkspace(nblogins,nbpasswords,nbiterations)
print("Workspace initialized in files/ subdirectory")
exit(0)
# Test whether init has been called before
try :
readfile("plain")
except FileNotFoundError:
initworkspace(nblogins,nbpasswords,nbiterations)
print("Workspace initialized in files/ subdirectory")
# test plain DB
print("\n============\nPlain storage:")
plaindb = readfile("plain")
print("Plain DB is : " + str(plaindb))
print("Authenticating with plain DB : " + str(authplain(plaindb[0][0],plaindb[0][1],plaindb)))
#test encrypted db
print("\n============\nEncrypted storage:")
encdb = readfile("enc")
print("Encrypted DB is " + str(encdb))
print("Authenticating with encrypted DB : " + str(authencrypted(plaindb[1][0],plaindb[1][1],encdb)))
start = time.time()
crackedenc = crackencrypted(encdb)
end = time.time()
print("Time to crack encrypted DB : " + str(end-start) + " seconds")
print("Cracked encrypted DB is " + str(crackedenc))
#test SHA db
print("\n============\nSHA storage:")
shadb = readfile("sha")
print("SHA DB is " + str(shadb))
print("Authenticating with SHA DB : " + str(authsha(plaindb[0][0],plaindb[0][1],shadb)))
start = time.time()
crackedsha = cracksha(shadb)
end = time.time()
print("Time to crack SHA DB : " + str(end-start) + " seconds")
print("Cracked SHA DB is " + str(crackedsha))
#test Salted SHA db
print("\n============\nSalted SHA storage:")
saltedshadb = readfile("saltedsha")
print("Salted SHA DB is " + str(saltedshadb))
print("Authenticating with Salted SHA DB : " + str(authsaltedsha(plaindb[0][0],plaindb[0][1],saltedshadb)))
start = time.time()
crackedsaltedsha = cracksaltedsha(saltedshadb)
end = time.time()
print("Time to crack salted SHA DB : " + str(end-start) + " seconds")
print("Cracked salted SHA DB is " + str(crackedsaltedsha))
# test PBKDF2 DB
print("\n============\nPBKDF2 storage:")
pbkdf2db = readfile("pbkdf2")
print("PBKDF2 DB is " + str(pbkdf2db))
print("Authenticating with PBKDF2 DB : " + str(authpbkdf2(plaindb[0][0],plaindb[0][1],pbkdf2db)))
start = time.time()
crackedpbkdf2 = crackpbkdf2(pbkdf2db)
end = time.time()
print("Time to crack PBKDF2 DB : " + str(end-start) + " seconds")
print("Cracked PBKDF2 DB is " + str(crackedpbkdf2))

250
td3-code/toolbox.py Executable file
View File

@ -0,0 +1,250 @@
#!/usr/bin/env python3
# Avoir une lib avec des briques prêtes
# Avoir un script qui crée les fichiers de password SHA/PB/etc. pour pouvoir les manipuler en texte
# TD : associer les briques pour évaluer les attaques sur un pass / une base
# mettre un « except ImportError » et ressayer avec « Cryptodome » a la place de « Crypto »
import re
import time
import random
import hashlib
# tweak to (try to) handle different crypto lib naming across systems (Linux, Mac, Win)
try:
from Crypto.Cipher import AES
from Crypto import Random
except ImportError:
try:
from crypto.Cipher import AES
from crypto import Random
except ImportError:
from Cryptodome.Cipher import AES
from Cryptodome import Random
import base64
import os
import urllib.request
import string
# returns an array of a dictionary of passwords
def getPassDict(nbpasswords):
try:
f = open("files/passwords.txt")
except FileNotFoundError:
print("Downloading a passwords list...")
urllib.request.urlretrieve("https://github.com/danielmiessler/SecLists/blob/master/Passwords/Common-Credentials/10-million-password-list-top-1000000.txt?raw=true", "files/passwords.txt")
print("Done !")
f = open("files/passwords.txt")
passwords = []
#nbpasswords = 10000
passtogen = nbpasswords
for password in f:
passwords.append(password.strip())
passtogen-=1
if passtogen == 0:
break
return passwords
def genRandomPassword():
length = 6
chars = string.ascii_letters + string.digits
return ''.join(random.choice(chars) for i in range(length))
# reads/writes shadow-style files
def readfile(filename):
f = open("files/"+filename)
res = []
for line in f:
output = line.strip().split(":")
res.append(output)
return res
def writeFile(filename, array):
f = open("files/"+filename,'w')
for line in array:
towrite = ""
for item in line:
towrite+=item + ":"
towrite = towrite[:-1]
f.write(towrite)
f.write('\n')
# Plain storage
def genplain(nblogins,nbpasswords):
passwords = getPassDict(nbpasswords)
logins = []
for i in range(0,nblogins):
login = "user" + str(i)
if (random.randint(0,10) < 4):
logins.append((login,passwords[random.randint(0,len(passwords)-1)]))
else:
logins.append((login,genRandomPassword()))
return logins
def authplain(login, passwd, database):
for i in database:
if i[0] == login:
current = i[1]
return (current == passwd)
# Encrypted storage
def genencrypted(logins):
encdb = []
key = Random.new().read(16)
iv = Random.new().read(AES.block_size)
f = open("files/enckey",'wb')
f.write((base64.b64encode(key)))
f.write(b":")
#f = open("files/enciv",'wb')
f.write((base64.b64encode(iv)))
for i in logins:
cipher = AES.new(key, AES.MODE_CFB, iv)
enc = (base64.b64encode(cipher.encrypt(i[1].encode('utf-8')))).decode("utf-8")
encdb.append((i[0],enc))
#print(enc)
return encdb
def authencrypted(login, passwd, database):
for i in database:
if i[0] == login:
current = i[1]
keyiv = readfile("enckey")[0]
key = base64.b64decode(keyiv[0])
iv = base64.b64decode(keyiv[1])
#key = base64.b64decode(readfile("enckey")[0][0])
#iv = base64.b64decode(readfile("enciv")[0][0])
cipher = AES.new(key, AES.MODE_CFB, iv)
return (passwd == cipher.decrypt(base64.b64decode(current)).decode('utf-8'))
def decrypt(keyiv,data):
key = base64.b64decode(keyiv[0])
iv = base64.b64decode(keyiv[1])
cipher = AES.new(key, AES.MODE_CFB, iv)
return cipher.decrypt(base64.b64decode(data)).decode('utf-8')
# SHA storage
def gensha(logins):
db = []
for i in logins:
csum = hashlib.sha256(i[1].encode('utf-8')).hexdigest()
db.append((i[0],csum))
return db
def authsha(login, passwd, database):
for i in database:
if i[0] == login:
current = i[1]
return (current == hashlib.sha256(passwd.encode('utf-8')).hexdigest())
def genshahashes(passwords):
hashes = []
for passwd in passwords:
hashes.append([hashlib.sha256(passwd.encode('utf-8')).hexdigest(),passwd])
return hashes
def getpassfromshahash(hashes, hash):
for j in hashes:
if j[0] == hash:
return j[1]
return None
# Salted SHA storage
def gensaltedsha(logins):
db = []
for i in logins:
salt = str(random.randint(0,65535))
csum = hashlib.sha256((i[1]+salt).encode('utf-8')).hexdigest()
db.append((i[0],csum,salt))
return db
def authsaltedsha(login, passwd, database):
for i in database:
if i[0] == login:
current = i[1]
salt = i[2]
return (current == hashlib.sha256((passwd+salt).encode('utf-8')).hexdigest())
def salthash(password,salt):
return hashlib.sha256((password+str(salt)).encode('utf-8')).hexdigest()
# PBKDF2 storage
def genpbkdf2(logins,nbiterations):
db = []
for i in logins:
salt = str(random.randint(0,65535))
csum = base64.b64encode(hashlib.pbkdf2_hmac('sha256',i[1].encode('utf-8'),str(salt).encode('utf-8'),nbiterations)).decode('utf-8')
db.append((i[0],csum,salt,str(nbiterations)))
return db
def authpbkdf2(login, passwd, database):
for i in database:
if i[0] == login:
current = i[1]
salt = i[2]
nbiterations = int(i[3])
return (base64.b64decode(current) == hashlib.pbkdf2_hmac('sha256',passwd.encode('utf-8'),str(salt).encode('utf-8'),nbiterations))
def pbkdf2(password,salt,nbiterations):
nbiterations = int(nbiterations)
return base64.b64encode(hashlib.pbkdf2_hmac('sha256',password.encode('utf-8'),str(salt).encode('utf-8'),nbiterations)).decode('utf-8')
# Generate shadow-style files
def initworkspace(nblogins,nbpasswords,nbiterations):
print("Generating " + str(nblogins) + " logins and " + str(nbpasswords) + " passwords")
try :
os.mkdir("files")
except FileExistsError:
pass
plaindb = genplain(nblogins,nbpasswords)
writeFile("plain", plaindb)
encdb = genencrypted(plaindb)
writeFile("enc", encdb)
shadb = gensha(plaindb)
writeFile("sha", shadb)
saltedshadb = gensaltedsha(plaindb)
writeFile("saltedsha", saltedshadb)
pbkdf2db = genpbkdf2(plaindb,nbiterations)
writeFile("pbkdf2", pbkdf2db)
# Unit tests
if __name__ == '__main__':
# create shadow files
initworkspace(10,100,1000)
print("======\nUnit tests of the toolbox, you must work in skeleton.py\n=========")
# test plain DB
print("\n============\nPlain storage:")
plaindb = readfile("plain")
print("Plain DB is : " + str(plaindb))
print("Authenticating with plain DB : " + str(authplain(plaindb[0][0],plaindb[0][1],plaindb)))
#test encrypted db
print("\n============\nEncrypted storage:")
encdb = readfile("enc")
print("Encrypted DB is " + str(encdb))
print("Authenticating with encrypted DB : " + str(authencrypted(plaindb[1][0],plaindb[1][1],encdb)))
#test SHA db
print("\n============\nSHA storage:")
shadb = readfile("sha")
print("SHA DB is " + str(shadb))
print("Authenticating with SHA DB : " + str(authsha(plaindb[0][0],plaindb[0][1],shadb)))
#test Salted SHA db
print("\n============\nSalted SHA storage:")
saltedshadb = readfile("saltedsha")
print("Salted SHA DB is " + str(saltedshadb))
print("Authenticating with Salted SHA DB : " + str(authsaltedsha(plaindb[0][0],plaindb[0][1],saltedshadb)))
# test PBKDF2 DB
print("\n============\nPBKDF2 storage:")
pbkdf2db = readfile("pbkdf2")
print("PBKDF2 DB is " + str(pbkdf2db))
print("Authenticating with PBKDF2 DB : " + str(authpbkdf2(plaindb[0][0],plaindb[0][1],pbkdf2db)))
print("\n======\nUnit tests of the toolbox, you must work in skeleton.py\n=========")

105
td3-passwords.md Normal file
View File

@ -0,0 +1,105 @@
TD3 : Stockage et authentification par mot de passe
=============================================
_Pas de compte-rendu pour ce TD_
Ce TD présente le stockage et l'authentification par mot de passe côté serveur. Il s'agit typiquement du problème rencontré par une application web qui souhaite authentifier ses utilisateurs, ou de ce qui est mis en œuvre dans une base de mots de passes système (/etc/shadow ou LDAP). Pour cela, l'application va stocker en base les comptes existants ainsi que le moyen de les authentifier. Comme il n'est évidemment pas souhaitable de stocker les mots de passe des utilisateurs en clair, nous allons analyser comment résoudre ce problème.
Contexte général
================
Le scénario d'attaque est une exfiltration des fichiers de l'application (dont le fichier de la base de données ou le fichier `/etc/shadow` par exemple). Vous pouvez consulter une liste non exhaustive de bases ayant été dérobées sur le site [HaveIBeenPwned](https://haveibeenpwned.com/PwnedWebsites) pour vous rendre compte de l'étendue du problème. Dans ce cadre, nous posons les points suivants :
* Le serveur est déjà compromis, l'obtention d'un compte valide sur ce serveur n'a pas d'intérêt pour l'attaquant.
* Les victimes potentielles sont les utilisateurs du site qui y ont enregistré un compte. En effet, un attaquant pourrait alors essayer de se connecter en leur nom sur des services tiers grâce aux informations récupérées.
Pour limiter ce risque, deux approches complémentaires doivent être mises en place :
1. Le serveur doit compliquer autant que possible la tâche de l'attaquant qui a volé la base en maximisant le temps nécessaire pour obtenir des informations valides à partir de la base (objet de ce TD).
2. Les utilisateurs, n'ayant pas la possibilité de connaître les contre-mesures mises en place par le serveur, doivent limiter l'impact de cette compromission en utilisant des mots de passes différents, idéalement un pour chaque site (ce qui passe souvent par un gestionnaire de mots de passe, non abordé dans ce TD).
Ces deux mesures sont bien complémentaires car il est du devoir de chaque site de protéger les mots de passes des utilisateurs n'appliquant pas les meilleures pratiques et de chaque utilisateur de protéger au mieux de ses capacités ses mots de passes. Dans le cadre de ce TD, nous analysons la mesure (1), à appliquer côté serveur.
Squelette de code fourni
========================
Vous devez télécharger le squelette de code [ici](td3-code). Vous pouvez récupérer l'intégralité du dépôt en tapant `git clone https://git.kaz.bzh/francois.lesueur/LPCyber.git`, puis aller dans le dossier `td3-code`. Vous pourriez avoir besoin d'installer la bibliothèque python PyCryptodome (de préférence, et nécessaire avec Python 3.8) ou PyCrypto (dépréciée, mais a priori fonctionnelle jusque Python 3.7). Par exemple avec pip3 pour avoir PyCryptodome uniquement (les deux ne peuvent pas coexister sur le système) :
```
pip3 uninstall PyCrypto
pip3 install -U PyCryptodome
```
* `toolbox.py` est la bibliothèque contenant la boîte à outils, il peut être intéressant d'aller la consulter mais elle n'est pas à modifier ;
* `skeleton.py` contient le programme à écrire.
En début de TD, vous devez lancer `./skeleton.py init` pour créer votre espace de travail. Cette commande, que vous pourrez rappeler plus tard, génère les fichiers suivants (lisibles) dans le sous-dossier `files` :
* `plain` contient la base login/password en clair
* `enc` contient la base chiffrée en AES (la clé, volée également car nécessairement accessible à proximité sauf cas particulier est dans `enckey`)
* `sha` contient la base hashée avec SHA256
* `saltedsha` contient la base hashée/salée avec SHA256
* `pbkdf2` contient la base avec n itérations de hash salé (PBKDF2)
Vous pouvez visualiser tous ces fichiers dans un éditeur de texte classique et analyser les différents champs présents. Vous pouvez ensuite exécuter `./skeleton.py` (sans argument) qui affichera, pour chaque schéma de stockage :
* le contenu de la base stockée
* le résultat d'un test unitaire d'authentification (doit toujours être vrai)
* l'appel (chronométré) à une fonction pour casser la base (fonctions non implémentées dans le squelette fourni)
Analyse des différents schémas
==============================
Pour chaque schéma (clair `plain`, chiffré `enc`, hash `sha`, hash salé `saltedsha`, hash salé coûteux `pbkdf2`), vous devez :
* analyser le processus de l'ajout d'un compte et de la vérification d'un mot de passe
* proposer la procédure de récupération pour un utilisateur qui a perdu son mot de passe
* évaluer l'information révélée directement par la base de mots de passe
* évaluer le coût de cassage d'un mot de passe isolé
* évaluer le coût de cassage de la base entière
* implémenter la fonction pour casser la base
<!--
Notations
=========
* h(m) est le hash du message m
* Si K<sub>A</sub> est une clé symétrique, {m}<sub>K<sub>A</sub></sub> est le chiffré de m avec la clé K<sub>A</sub>, m = { {m}<sub>K<sub>A</sub></sub>}<sub>K<sub>A</sub></sub>
* Si Pub<sub>A</sub> et Priv<sub>A</sub> sont des clés asymétriques complémentaires publique/privée, {m}<sub>Pub<sub>A</sub></sub> est le chiffré de m avec la clé Pub<sub>A</sub> et m = { {m}<sub>Pub<sub>A</sub></sub>}<sub>Priv<sub>A</sub></sub>
* m signé avec la clé Priv<sub>A</sub> est noté m.{h(m)}<sub>Priv<sub>A</sub></sub>
-->
<!--
Côté client
===========
Un gestionnaire de mots de passe conserve une table liant un titre, un login et un mot de passe. Par exemple :
| Titre | Login | Password |
| - | - | - |
| CDiscount | Alice31 | hujk15tr |
| laposte.net | AliceLefur@laposte.net | jku78!io |
| CB | 4785 1547 4554 6657 | 7514 |
Considérons que l'utilisation de ce gestionnaire de mots de passe nécessite la saisie préalable d'un mot de passe maître, lors de l'ouverture.
Proposez la mise en œuvre d'un gestionnaire de mots de passe local puis d'un gestionnaire de mots de passe en ligne. Analysez les risques d'attaques par les différents acteurs (eux-mêmes ou suite à comprommission de leur infrastructure).
-->
Pour approfondir
================
**Les schémas vus dans ce TD, de manière similaire à ce que nous avons vu côté RSA, sont simplifiés pour comprendre le principe (textbook)**. Pour référence plus précise, vous pouvez ensuite consulter (et garder) :
* [SOPHOS : Serious Security: How to store your users passwords safely](https://nakedsecurity.sophos.com/2013/11/20/serious-security-how-to-store-your-users-passwords-safely/)
* [OWASP : Password Storage Cheat Sheet](https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet)
* [Micode : 30 000 MOTS DE PASSE CRACKÉS EN 5 MINUTES ! (vidéo)](https://youtu.be/_1ONcmFUOxE)
* [Des exemples de dictionnaires](https://weakpass.com/wordlist)

View File

@ -1,9 +1,11 @@
TD2.2 Apache/CMS
TD4 Apache/CMS/Tunnels
================
_Compte-rendu à préparer et déposer en binôme_
Ce TD couvre la configuration et l'utilisation d'un serveur HTTP Apache ainsi qu'un CMS Wordpress.
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=2f121a18-f94d-45d1-a079-f68229ebdfa9). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=19a6f8f4-0cf8-47a4-bd05-db4b9ea2d4e4). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
> Si vous êtes sous Windows et que la VM ne fonctionne pas avec VirtualBox, vous pouvez utiliser à la place VMWare Player. Dans ce cas, il faudra cliquer sur "Retry" lors de l'import puis installer le paquet open-vm-tools-desktop dans la VM pour profiter du redimensionnement automatique du bureau (`apt install open-vm-tools-desktop` dans un shell).
@ -70,11 +72,17 @@ Contrôle d'accès
Nous allons maintenant contrôler l'accès au sous-dossier créé (par login/mot de passe).
Vous devez tout d'abord créer un fichier `.htpasswd` qui va contenir les couples login/mot de passe autorisés. Vous pouvez le placer dans le sous-dossier à protéger ou ailleurs, par exemple dans un dossier (à créer) `/etc/apache2/htpasswd/`. Vous utiliserez pour cela la commande `htpasswd` en faisant attention à utiliser la fonction de hachage bcrypt (une option à htpasswd) au lieu du MD5 utilisé par défaut (Explication [ici](https://nakedsecurity.sophos.com/2013/11/20/serious-security-how-to-store-your-users-passwords-safely/), pas à lire en TD mais pour les curieux).
Vous devez tout d'abord créer un fichier `.htpasswd` qui va contenir les couples login/mot de passe autorisés. Vous pouvez par exemple le placer dans un dossier (à créer) `/etc/apache2/htpasswd/` (pour des raisons de sécurité, on évitera de le placer dans un dossier servi par Apache comme `/var/www/html/...`). Vous utiliserez pour cela la commande `htpasswd` en faisant attention à utiliser la fonction de hachage bcrypt (une option à htpasswd) au lieu du MD5 utilisé par défaut (Explication [ici](https://nakedsecurity.sophos.com/2013/11/20/serious-security-how-to-store-your-users-passwords-safely/), pas à lire en TD mais pour les curieux).
> Question 4 : Quelles commandes avez-vous tapées ? Quel est votre fichier .htpasswd résultat ?
Vous devez ensuite spécifier quel dossier doit être protégé. Vous trouverez le nécessaire dans la [documentation officielle](https://httpd.apache.org/docs/2.4/fr/howto/auth.html), à parcourir jusqu'à la section "Autorisation d'accès à plusieurs personnes" (incluse). Lisez attentivement la partie sur les prérequis, votre fichier de configuration apache2 est `/etc/apache2/apache2.conf` (et non `httpd.conf` comme mentionné à certains endroits de cette documentation). Validez enfin le fonctionnement en vérifiant que l'authentification est bien demandée au client lors d'une connexion graphique avec Firefox.
Vous devez ensuite spécifier quel dossier doit être protégé. Vous trouverez le nécessaire dans la [documentation officielle](https://httpd.apache.org/docs/2.4/fr/howto/auth.html), à parcourir jusqu'à la section "Autorisation d'accès à plusieurs personnes" (incluse). Lisez attentivement la partie sur les prérequis, votre fichier de configuration apache2 est `/etc/apache2/apache2.conf` (et non `httpd.conf` comme mentionné à certains endroits de cette documentation).
Vous devez réaliser ce contrôle de 2 façons distinctes :
* D'abord en intégrant directement les directives `Auth*` dans une section `<Directory>...</Directory>`, par exemple en vous inspirant de la section concernant `/var/www/` dans le fichier de configuration `/etc/apache2/apache2.conf`. Attention à bien exécuter un `systemctl reload apache2` pour prendre en compte les changements dans les `.conf`
* Ensuite en intégrant un `AllowOverride` dans la section concernant ce même répertoire puis en plaçant un fichier `.htaccess` dans le dossier `/var/www` (AllowOverride est décrit dans la partie "Les prérequis" de la page de documentation officielle)
Validez chaque fonctionnement en vérifiant que l'authentification est bien demandée au client lors d'une connexion graphique avec Firefox.
> Question 5 : Quelles modifications/ajouts avez-vous fait ?
@ -97,9 +105,9 @@ MariaDB
MariaDB est un fork de MySQL que nous allons utiliser ici, avec PHPMyAdmin pour aider l'administration (création de bases, d'utilisateurs, etc.).
Installez les paquets mariadb-server et phpmyadmin. Lors de l'installation de phpmyadmin, vous aurez à répondre à quelques questions : utilisez la fonctionnalité dbconfig, notez le mot de passe que vous choisirez pour l'utilisateur phpmyadmin et activez la configuration pour apache2.
Installez d'abord mariadb-server. Pour finaliser l'installation, exécutez `mysql_secure_installation`, qui permettra de mieux configurer MariaDB et de spécifier un mot de passe root (par défaut vide et non autorisé).
Pour finaliser l'installation, exécutez `mysql_secure_installation`, qui permettra de mieux configurer MariaDB et de spécifier un mot de passe root (par défaut vide et non autorisé).
Installez ensuite phpmyadmin (faîtes bien cela *après* avoir installé mariadb-server, dans un autre apt-get, sinon il y aura une erreur). Lors de l'installation de phpmyadmin, vous aurez à répondre à quelques questions : utilisez la fonctionnalité dbconfig, notez le mot de passe que vous choisirez pour l'utilisateur phpmyadmin et activez la configuration pour apache2.
> Question 8 : Faîtes une capture d'écran de PHPMyAdmin connecté en tant que root
@ -120,4 +128,63 @@ Enfin, installez un thème, un plugin et écrivez un premier billet
> Question 10 : Comme tout logiciel (que ce soit un binaire compilé depuis un code source C comme le serveur HTTPD Apache ou un code source PHP interprété à l'exécution), WordPress doit être tenu à jour afin d'installer les correctifs de sécurité. Pour chacune des méthodes d'installation, comment se passera ce mécanisme de mise à jour ? Pouvez-vous trouver des avantages et inconvénients à ces méthodes ?
**Votre compte-rendu doit être déposé sur Moodle en fin de journée au format PDF uniquement**
Tunnels
=======
En utilisant des tunnels, vous allez voir comment cacher une connexion (par exemple HTTP) dans une autre connexion (par exemple SSH)
SSH
---
L'outil ssh permet de réaliser des tunnels avec ses options -L (Local) et -R (Remote). Deux exemples :
* `ssh -L 8080:192.168.1.2:80 192.168.2.4`:
* La machine locale ouvre une connexion SSH vers la machine 192.168.2.4
* La machine locale ouvre le port 8080 en écoute
* Tout ce qui entre localement sur ce port 8080 emprunte le tunnel SSH jusqu'à 192.168.2.4 puis la machine 192.168.2.4 route ces paquets vers 192.168.1.2 sur le port 80
* `ssh -R 8080:192.168.1.2:80 192.168.2.4` est symétrique :
* La machine locale ouvre une connexion SSH vers la machine 192.168.2.4
* La machine 192.168.2.4 ouvre le port 8080 en écoute
* Tout ce qui entre sur 192.168.2.4 sur ce port 8080 emprunte le tunnel SSH jusqu'au client SSH puis ce client SSH route ces paquets vers 192.168.1.2 sur le port 80
Vous allez mettre en place deux tunnels SSH, chacun depuis target-dev vers isp-a-home :
* Dans le premier, vous utiliserez -L pour qu'un `curl localhost:8080` exécuté sur target-dev récupère la page sur le serveur web (port 80) de 100.81.0.2 (un site externe dont on aurait souhaité interdire l'accès depuis target)
* Dans le second, vous utiliserez -R pour qu'un `curl localhost:8080` exécuté sur isp-a-home récupère la page sur le serveur web (port 80) de 100.80.0.5 (l'intranet de target)
> Question 11 : Recopiez les commandes ssh exécutées.
> Question 12 : Utilisez Wireshark (avec le filtre ssh ou http) pour afficher les paquets SSH entre target-dev et isp-a-home et les paquets HTTP vers 100.81.0.2 et 100.80.0.5.
Netcat
------
Imaginez que vous êtes le développeur et que vous souhaitez fournir un accès au serveur web interne de prototypage "target-intranet" à un client externe, alors que celui-ci n'est normalement pas accessible de l'externe ! Vous allez créer un tunnel pour contourner la politique de sécurité. Vous disposez pour cela des machines "target-dev" (votre poste de travail interne) et "isp-a-home" (une machine extérieure, à votre domicile).
Nous allons utiliser l'outil `netcat` pour établir un tunnel très simple.
Connectez-vous sur la machine "isp-a-home". Nous allons commencer par éteindre le service _Apache_ en écoute pour libérer le port 80 qui nous sera utile puis nous allons écouter les connexions sur le port HTTP (TCP/80).
```bash
service apache2 stop
while true; do nc -v -l -p 80 -c "nc -l -p 8080"; done
```
Enfin, côté "target-dev", nous mettons en place la connexion sortante vers la machine distante:
```bash
while true; do nc -v 100.120.0.3 80 -c "nc 100.80.0.5 80"; sleep 2; done
```
>Pour rappel :
>* 100.120.0.3 = isp-a-home
>* 100.80.0.5 = target-intranet
Testez avec la machine "isp-a-hacker" que vous pouvez bien accéder au serveur intranet depuis l'externe sans aucun contrôle via l'URL `http://100.120.0.3:8080`
> Question 13 : À l'aide d'un schéma, expliquez ce tunnel.
> Question 14 : Retrouvez-le dans Wireshark
Il est très difficile de bloquer ou même détecter les tunnels (tunnel chiffré par SSH, ou qui mime une apparence de HTTP, etc.)
**Votre compte-rendu doit être déposé sur Moodle au format PDF uniquement**

View File

@ -1,11 +1,11 @@
TD3.1 DNS (3 heures)
TD5 DNS (3 heures)
====================
_Compte-rendu à préparer et déposer en binôme_
Ce TD couvre la configuration et l'utilisation du DNS, à la fois côté serveurs d'autorité et de résolution.
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=2f121a18-f94d-45d1-a079-f68229ebdfa9). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=19a6f8f4-0cf8-47a4-bd05-db4b9ea2d4e4). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
> Si vous êtes sous Windows et que la VM ne fonctionne pas avec VirtualBox, vous pouvez utiliser à la place VMWare Player. Dans ce cas, il faudra cliquer sur "Retry" lors de l'import puis installer le paquet open-vm-tools-desktop dans la VM pour profiter du redimensionnement automatique du bureau (`apt install open-vm-tools-desktop` dans un shell).
@ -91,7 +91,7 @@ dig @80.67.169.12 www.univ-ubs.fr # Interroge le serveur (résolveur) 80.67
Le serveur racine alternatif O de MI-LXC est accessible à l'IP 100.100.0.10.
Nous allons faire la résolution manuellement depuis la machine `isp-a-home`. Commencez par démarrer wireshark sur cette machine (passage root avec su, écoute sur eth0 puis filtre "dns" pour ne voir que les paquets qui nous intéressent). En utilisant dig depuis la machine `isp-a-home` et en interrogeant successivement chaque nœud de l'arbre DNS depuis cette racine 100.100.0.10, résolvez le nom d'hôte `www.target.milxc`. À chaque étape, retrouvez les requêtes et les réponses dans Wireshark : dans la fenêtre d'analyse (zone du milieu), dépliez la partie DNS jusqu'à trouver le contenu décodé des questions et réponses DNS.
Nous allons faire la résolution manuellement depuis la machine `isp-a-home`. Commencez par démarrer wireshark sur cette machine (écoute sur eth0 puis filtre "dns" pour ne voir que les paquets qui nous intéressent). En utilisant dig depuis la machine `isp-a-home` et en interrogeant successivement chaque nœud de l'arbre DNS depuis cette racine 100.100.0.10, résolvez le nom d'hôte `www.target.milxc`. À chaque étape, retrouvez les requêtes et les réponses dans Wireshark : dans la fenêtre d'analyse (zone du milieu), dépliez la partie DNS jusqu'à trouver le contenu décodé des questions et réponses DNS.
> Question 4 : Notez le chemin de résolution vers ce nom d'hôte, les questions posées et reçues par dig auprès des différents serveurs faisant autorité, jusqu'à obtenir l'IPv4 souhaitée.
@ -154,4 +154,4 @@ Relancez le serveur NSD et vérifiez l'absence d'erreurs dans les logs (`journal
> Question 9 (bonus) : Afin d'obtenir un système robuste et conforme aux recommandations standards, il faudrait ensuite dupliquer cette zone sur un serveur secondaire, indépendant, qui serait aussi annoncé dans la zone parente .milxc (par exemple sur target-infra). Explorez cela et rédigez ce que vous aurez compris ou réalisé.
**Votre compte-rendu doit être déposé sur Moodle en fin de journée au format PDF uniquement, un dépôt par binôme.**
**Votre compte-rendu doit être déposé sur Moodle au format PDF uniquement, un dépôt par binôme.**

View File

@ -1,4 +1,4 @@
TD4.1 Mail (3 heures)
TD6 Mail (3 heures)
====================
_Compte-rendu à préparer et déposer en binôme_
@ -7,7 +7,7 @@ _Compte-rendu à préparer et déposer en binôme_
Ce TD couvre la configuration et l'utilisation du mail, côté client et serveur. Les interactions sont complexes, l'objectif n'est pas d'avoir absolument un système mail entièrement fonctionnel, mais plutôt de bien appréhender la construction générale de ce type de système. Soyez méthodiques dans votre travail car vous allez manipuler de nombreuses perspectives différentes !
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://filesender.renater.fr/?s=download&token=2f121a18-f94d-45d1-a079-f68229ebdfa9). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://flesueur.irisa.fr/mi-lxc/images/milxc-debian-amd64-1.4.2pre3.ova). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
> Si vous êtes sous Windows et que la VM ne fonctionne pas avec VirtualBox, vous pouvez utiliser à la place VMWare Player. Dans ce cas, il faudra cliquer sur "Retry" lors de l'import puis installer le paquet open-vm-tools-desktop dans la VM pour profiter du redimensionnement automatique du bureau (`apt install open-vm-tools-desktop` dans un shell).
@ -235,4 +235,4 @@ Roundcube est un webmail simple disponible dans les paquets Debian.
**Votre compte-rendu doit être déposé sur Moodle en fin de journée au format PDF uniquement, un dépôt par binôme.**
**Votre compte-rendu doit être déposé sur Moodle au format PDF uniquement, un dépôt par binôme.**

249
td7-archi.md Normal file
View File

@ -0,0 +1,249 @@
TD7 Architecture réseau et firewall (3 heures)
====================
_Compte-rendu à préparer et déposer en binôme_
Ce TD couvre la segmentation réseau et l'utilisation du firewall IPTables.
Ce TD sera réalisé dans la VM MI-LXC disponible [ici](https://flesueur.irisa.fr/mi-lxc/images/milxc-debian-amd64-1.4.2pre3.ova). Avant de lancer la VM, il peut être nécessaire de diminuer la RAM allouée. Par défaut, la VM a 3GO : si vous avez 4GO sur votre machine physique, il vaut mieux diminuer à 2GO, voire 1.5GO pour la VM (la VM devrait fonctionner de manière correcte toujours).
> Si vous êtes sous Windows et que la VM ne fonctionne pas avec VirtualBox, vous pouvez utiliser à la place VMWare Player. Dans ce cas, il faudra cliquer sur "Retry" lors de l'import puis installer le paquet open-vm-tools-desktop dans la VM pour profiter du redimensionnement automatique du bureau (`apt install open-vm-tools-desktop` dans un shell).
Avant de commencer le TP, vous devez lire le chapitre [Netfilter](https://fr.wikibooks.org/wiki/Administration_r%C3%A9seau_sous_Linux/Netfilter) du Wikilivre "Administration Réseau sous Linux". Prêtez une attention particulière au sens des 3 chaînes INPUT, OUTPUT et FORWARD.
> Question 1 : Expliquez ces 3 chaînes INPUT, OUTPUT et FORWARD : à quels types de paquets s'appliquent-elles ?
>Note 1 : Pour les plus aventuriers, il est possible d'utiliser nftables, le successeur d'iptables. Quelques infos de démarrage sont proposées [ici](https://wiki.nftables.org/wiki-nftables/index.php/Simple_rule_management).
>Note 2 : Le TP est prévu sur IPv4, mais l'infrastructure supporte également IPv6. Vous pouvez donc aussi regarder IPv6 si vous le souhaitez.
Cheat sheet
===========
Voici un petit résumé des commandes dont vous aurez besoin :
| Commande | Description | Utilisation |
| -------- | ----------- | ----------- |
| print | Génère la cartographie du réseau | ./mi-lxc.py print |
| attach | Permet d'avoir un shell sur une machine | ./mi-lxc.py attach iutva-infra |
| display | Lance un affichage sur la machine cible | ./mi-lxc.py display isp-a-home |
| start | Démarre la plateforme pédagogique | ./mi-lxc.py start |
| stop | Éteint la plateforme pédagogique | ./mi-lxc.py stop |
Rappel: Vous devez être dans le répertoire `/root/mi-lxc/` pour exécuter ces commandes.
Topologie du routeur
====================
Connectez-vous sur la machine "target-router" : `./mi-lxc.py attach target-router`. En effet, lors de ce TP, nous allons travailler sur `target-router` et, plus globalement, sur la segmentation de l'AS Target, notamment parce que cet AS possède déjà quelques machines et services propices à réfléchir sur ce point.
Une fois connectés sur target-router, regardez la configuration réseau avec notamment ses deux interfaces "eth0" et "eth1", par exemple avec `ifconfig` ou `ip addr`. Identifiez laquelle se situe côté interne et laquelle côté externe de l'entreprise et notez l'adresse IP de chacune.
> Question 2 : Quelles sont les interfaces et adresses IP internes et externes ?
Protection de la machine firewall
=================================
Nous allons maintenant mettre en place un firewall sur la machine "target-router" pour découvrir l'usage de l'outil de firewall IPTables. En utilisant la page de manuel d'iptables ou votre lecture préalable, affichez l'ensemble des règles actives. Vous devriez voir quelque chose qui ressemble à :
```
Chain FORWARD (policy DROP 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
0 0 ACCEPT all -- eth0 eth1 0.0.0.0/0 100.80.1.2
0 0 ACCEPT all -- eth0 eth1 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED
0 0 ACCEPT all -- eth1 eth0 0.0.0.0/0 0.0.0.0/0
Chain INPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
Chain OUTPUT (policy ACCEPT 0 packets, 0 bytes)
pkts bytes target prot opt in out source destination
```
Vous voyez donc pour chaque chaîne :
* la "policy" (comportement par défaut) ;
* le nombre de paquets qui ont traversé les règles de la chaîne ;
* le nombre d'octets correspondants.
Pour le moment, peu de règles sont définies ; par la suite, cette commande vous permettra de lister l'ensemble des règles actives dans la table "filter".
Première règle iptables
-----------------------
Vérifiez que vous pouvez vous connecter en SSH sur la machine "target-router" depuis la machine "isp-a-hacker" (`./mi-lxc.py attach isp-a-hacker`) :
`ssh root@100.64.0.10`
Nous allons maintenant interdire toutes les connexions sur le port 22 (SSH). Pour cela, il faut interdire dans la chaîne INPUT les paquets TCP sur le port 22 avec la cible DROP.
Appliquez la règle avec la commande iptables sur "target-router". Essayez maintenant de vous connecter en SSH sur votre machine "target-router" depuis la machine "isp-a-hacker". Vous devez constater que la connexion est bien refusée mais que le client SSH met un certain temps à s'en apercevoir.
> Question 3 : Quelle commande IPTables avez-vous tapée ?
> Question 4 : Nous avons ici utilisé l'action DROP et le client SSH met un certain temps à s'apercevoir du refus. Comprenez-vous pourquoi ? Comment changer ce comportement ?
Priorité des règles
-------------------
Un même paquet peut correspondre à plusieurs règles de filtrage, éventuellement contradictoires : Netfilter applique les règles dans l'ordre et choisit systématiquement la première règle correspondant au paquet (attention, certains firewalls procèdent dans le sens contraire tandis que celui de Windows ne prend pas en compte l'ordre...). On parle alors de masquage de règles.
Afin de tester ce comportement, nous allons utiliser les paramètres de filtrage de la [section "Critères" du Wikilivre](https://fr.wikibooks.org/wiki/Administration_r%C3%A9seau_sous_Linux/Netfilter#Crit%C3%A8res).
* Montrez sur un exemple que l'ordre des règles compte. Pour modifier le filtrage, vous aurez besoin de supprimer des règles et d'en ajouter à des endroits spécifiques : référez-vous au manuel d'iptables.
* Mettez en place un jeu de règles autorisant le SSH sur le routeur uniquement depuis le LAN de l'entreprise (testable depuis la machine "target-admin" par exemple).
Dans la pratique, le masquage est souvent utilisé volontairement pour spécifier un cas général peu prioritaire et des cas particuliers plus prioritaires. Évidemment, c'est également source d'erreurs dans ces cas complexes.
> Question 5 : Quelles commandes IPTables avez-vous tapées ?
Modules iptables
================
iptables est extensible par un système de modules. Vous trouverez une description des modules existants dans le manuel de "iptables-extensions".
Comment
-------
Le module `comment`, comme son nom l'indique, permet d'associer un commentaire à une règle afin d'assurer la bonne compréhension par tous des règles en place. Pour utiliser le module :
`iptables -A INPUT -m comment --comment "Ceci est un commentaire" -j...`
Multiport
---------
Le module multiport permet de créer une règle unique correspondant à plusieurs ports (plutôt que plusieurs règles) : `iptables -A INPUT -m multiport -p tcp --dports port1,port2,port3 -j...`
Créez une règle avec multiport autorisant les ports 22 et 53. N'hésitez pas à ajouter un commentaire pour y voir plus clair (plusieurs modules peuvent être utilisés simultanément).
Suivi de connexion ("state")
----------------------------
Netfilter permet le suivi des connexions via le module "state" (firewall _stateful_). Ce module permet d'identifier les nouveaux flux, les flux établis et les flux liés à un autre flux. Ce suivi de connexion permet d'affiner le filtrage de certains protocoles.
Le module "state" définit plusieurs états possibles pour les flux réseau, dont :
* NEW : c'est une nouvelle connexion
* ESTABLISHED : cette connexion est déjà connue (elle est passée par l'état NEW il y a peu de temps)
* RELATED : cette connexion est liée ou dépendante d'une connexion déjà ESTABLISHED. Attention, seul le premier paquet d'une connexion peut être RELATED, les suivants sont ESTABLISHED. Essentiellement utilisé pour le protocole FTP.
Par exemple, la règle déjà existante dans la chaîne FORWARD : ` 0 0 ACCEPT all -- eth0 eth1 0.0.0.0/0 0.0.0.0/0 state RELATED,ESTABLISHED` signifie que seulement les paquets `RELATED` ou `ESTABLISHED` sont autorisés de `eth0` vers `eth1`, ie, seules les "réponses" peuvent passer dans ce sens.
Pour voir l'effet de la question suivante, tout d'abord bloquez tout en sortie avec cette politique : `iptables -P OUTPUT DROP`
Puis créez une règle pour autoriser, en sortie du firewall, uniquement les réponses à des connexions SSH entrantes (à destination du service SSH sur le firewall).
> Question 6 : Quelles commandes IPTables avez-vous tapées ?
Administration à distance
=========================
Le firewall est généralement configuré à distance, depuis le poste d'un administrateur. Pour reproduire cela, affichez le bureau de la machine target-admin (`./mi-lxc display target-admin`). Depuis le bureau de cet administrateur, connectez vous en SSH au routeur, comme vu précédemment.
L'un des risques classiques, ensuite, est de scier sa branche pendant la configuration : écrivez via cette connexion SSH une règle qui bloque la connexion SSH d'administration et vous fait ainsi perdre la main sur la configuration du firewall...
> Question 7 : Proposez et exécutez une commande iptables qui bloque votre connexion SSH. Comment parvenez-vous ensuite à vous débloquer ?
Segmentation
============
Spécification
-------------
L'objectif d'une politique de sécurité réseau est de limiter les services accessibles depuis l'extérieur (approche historique) ainsi que de segmenter le réseau interne en zones distinctes (avec autorisations limitées entre ces zones, afin de limiter les risques de propagation automatique/pivot). Une telle politique se définit en trois étapes :
1. Création de zones réseau logiques via des sous-réseaux
2. Identification des services réseau portés, et accédés, par chaque machine
3. Définition des flux réseau autorisés entre zones en fonction des besoins identifiés précédemment. Ceci constitue la "matrice de flux"
**Par défaut, tout doit être interdit puis les services souhaités sont explicitement autorisés !**
> Ci-dessous un exemple de matrice de flux qui pourrait correspondre aux 2 zones initiales (int est la zone interne LAN et ext est la zone externe WAN) (insuffisante, donc, et attention ce n'est pas ça qui est implémenté par l'iptables initial) :
>
> | src\dst | ext | int |
> |:----------:|:------------------:|:----------------------------:|
> | ext | X | SMTP(S),IMAP(S),HTTP(S),DNS |
> | int | tout | X |
Pour rappel, le réseau de l'entreprise est composé de ces différents éléments (en plus du routeur, qui a le rôle particulier de gérer les échanges entre les zones et que vous pouvez ici ignorer dans la définition du contenu de vos zones) :
| Machine | Description |
| :-------: | ----------- |
| target-admin | Ordinateur de l'administrateur système. Il doit pouvoir administrer tout le parc en SSH. |
| target-commercial | Ordinateur du commercial. Il doit pouvoir envoyer des mails, accéder à l'intranet (site web sur target-intranet) et naviguer sur le web. |
| target-dev | Ordinateur du développeur. Il doit pouvoir envoyer des mails, mettre à jour l'intranet par SSH sur target-intranet et naviguer sur le web. |
| target-dmz | Ensemble de services à l'interface entre le SI et le reste du monde (DNS, SMTP, IMAP, HTTP) |
| target-ldap | Authentification centralisée, nécessaire à tous les postes du SI (dont la DMZ), en LDAP (logiciel slapd) |
| target-filer | Partage de fichiers qui doit être accessible à tous les postes clients internes (partage en SSH) |
| target-intranet | Applications internes, non accessibles au reste du monde |
Les noms des conteneurs peuvent être affichés avec `./mi-lxc.py` (sans paramètres), les machines ne commençant pas par "target-" représentent le "reste du monde" (WAN). Le plan d'adressage peut être affiché avec `./mi-lxc.py print`. Vous pouvez utiliser les commandes `netstat -laptn` ou bien `ss -lnptu` qui permettent d'afficher les ports en écoute, et donc les services, sur une machine donnée.
Votre description (matrice de flux sous forme tabulaire avec les machines sources en lignes et destinations en colonnes et services autorisés dans les cases, ou graphique) doit être claire et suffisamment précise pour être non ambiguë : un autre étudiant, avec cette description uniquement, devrait pouvoir refaire _exactement_ la même implémentation avec iptables.
> Question 8 : Décrivez sous forme de tableau (pas des commandes iptables !) une politique de sécurité réseau raisonnable pour le SI complet de l'entreprise.
> La question 8 est longue : il faut explorer le réseau, les machines, les services, comprendre les interactions et proposer une segmentation pertinente. La partie essentielle du TP s'arrête ici.
Implémentation
--------------
Une fois que la politique réseau a été précédemment définie sur le papier (phase de spécification), nous pouvons passer à l'implémentation dans les routeurs (sous-réseaux) et pares-feux (règles de filtrage).
Implémentez votre matrice de flux sur la machine "target-router". Vous aurez besoin de procéder en deux étapes :
* Segmenter le réseau "target" (**Prenez le temps de regarder le [tuto vidéo](https://flesueur.irisa.fr/mi-lxc/media/segmentation_milxc.mp4) !!!**) :
* Éditer `global.json` (dans le dossier mi-lxc) pour spécifier les interfaces sur le routeur, dans la section "target". Il faut ajouter des bridges (dont le nom doit commencer par "target-") et découper l'espace 100.80.0.1/16. Enfin, il faut ajouter les interfaces eth2, eth3... ainsi créées à la liste des `asdev` definie juste au-dessus (avec des ';' de séparation entre interfaces)
* Éditer `groups/target/local.json` pour modifier les adresses des interfaces et les bridges des machines internes (attention, pour un bridge nommé précédemment "target-dmz", il faut simplement écrire "dmz" ici, la partie "target-" est ajoutée automatiquement). Dans le même fichier vous devrez aussi mettre à jour les serveurs mentionnés dans les paramètres des templates "ldapclient", "sshfs" et "nodhcp", soit en remplaçant les noms de serveurs par leurs nouvelles adresses IP, soit en mettant à jour les enregistrements DNS correspondants (fichier `/etc/nsd/target.milxc.zone` sur "target-dmz")
* Exécuter `./mi-lxc.py print` pour visualiser la topologie redéfinie
* Exécuter `./mi-lxc.py stop && ./mi-lxc.py renet && ./mi-lxc.py start` pour mettre à jour l'infrastructure déployée
* Implémenter de manière adaptée les commandes iptables sur la machine "target-router" (dans la chaîne FORWARD). Si possible dans un script (qui nettoie les règles au début), en cas d'erreur.
> L'arborescence de MI-LXC et les fichiers json manipulés ici sont décrits [ici](https://github.com/flesueur/mi-lxc#how-to-extend).
> Question 9 : Décrivez vos interfaces réseaux/leur segment et recopiez vos commandes IPTables.
Contournement de la politique
-----------------------------
Imaginez que vous êtes le développeur et que vous souhaitez fournir un accès au serveur web interne de prototypage "target-intranet" à un
client externe, alors que celui-ci n'est normalement pas accessible de l'externe ! Vous allez créer un tunnel pour contourner la politique de sécurité.
Vous disposez pour cela des machines "target-dev" (votre poste de travail interne) et "isp-a-home" (une machine extérieure, à votre domicile).
Nous allons utiliser l'outil `netcat` pour établir un tunnel très simple.
Connectez-vous sur la machine "isp-a-home". Nous allons commencer par éteindre le service _Apache_ en écoute pour libérer le port 80 qui nous sera utile
puis nous allons écouter les connexions sur le port HTTP (TCP/80).
```bash
service apache2 stop
while true; do nc -v -l -p 80 -c "nc -l -p 8080"; done
```
Enfin, côté "target-dev", nous mettons en place la connexion sortante vers la machine distante:
```bash
while true; do nc -v 100.120.0.3 80 -c "nc 100.80.0.5 80"; sleep 2; done
```
>Pour rappel :
>* 100.120.0.3 = isp-a-home
>* 100.80.0.5 = target-intranet
Testez avec la machine "isp-a-hacker" que vous pouvez bien accéder au serveur intranet depuis l'externe sans aucun contrôle via l'URL `http://100.120.0.3:8080`
> Question 10 : À l'aide d'un schéma, expliquez ce phénomène.
Il est très difficile de bloquer ou même détecter les tunnels (imaginez un tunnel chiffré par SSH, ou qui mime une apparence de HTTP, etc.)
Bonus FTP
=========
FTP, comme quelques autres protocoles, présente des difficultés particulières pour les firewalls. En effet, la partie contrôle de FTP se passe sur une connexion (et un port) distinct de la partie données. Les firewalls modernes savent créer le lien entre ces deux connexions pour y appliquer un contrôle adapté.
Un serveur FTP est installé sur "target-dmz", configurez le firewall pour permettre son usage (transfert de fichiers) depuis une machine externe au SI. Attention, le FTP demande une connexion avec un utilisateur existant, par exemple debian/debian.
**Votre compte-rendu doit être déposé sur Moodle en fin de journée au format PDF uniquement, un dépôt par binôme.**