R1.03/cm2-entiers.md
2022-09-21 11:22:56 +02:00

3.1 KiB

CM2 Codage des entiers - Notes de cours

Quizz : Combien vaut 0.1 + 0.2 ?

  • 0
  • -0
  • 0.3
  • 0.30000000000004

Aujourd'hui on va répondre à cette question...

Encore et toujours du binaire

  • Élément de base : binaire
  • Regroupés en octets (8 bits)
  • Qu'on peut regrouper encore (par exemple 4 octets = 32 bits, 8 octets = 64 bits)
  • Sur 4 octets par exemple, 232 possibilités, ça ne va pas nous permettre de calculer jusqu'à l'infini...
    • 2 bits : 2 valeurs (0 et 1)
    • 8 bits : 256 valeurs (de 0 à 255) -> une partie d'IPv4, une table de caractères
    • 16 bits : 65 536 valeurs (de 0 à 65 535)
    • 32 bits : 4 294 967 296 valeurs -> le nombre d'IPv4, la limite à 4GB de RAM des machines/OS 32 bits

La notion de type

  • Langage typé ou non, chaque donnée (nombre) est une interprétation d'un code binaire par rapport à un type

    • Langage typé (fortement) ≃ le développeur explicite les types
    • Langage non typé (faiblement typé) ≃ le développeur n'explicite pas les types
    • Mais les types sont toujours là en-dessous !!!
    • Pour rire un peu : c'est le bazar
  • Les types de base : ceux du C, ceux qui sont compris par les microprocesseurs, donc calcul natif et donc rapide

    • int (pour les entiers)
    • float, double (pour les réels)
    • char (pour les... octets !)
  • Les types construits : on les construit à la main par composition de ces types de base

    • les nombres complexes
    • les grands entiers (de taille non limitée)
    • les coordonnées d'un point
    • ...
  • Les types de taille fixe (dont les types de base)

  • Les types de taille variable/infinie (des types construits, les nombres que l'on écrit au crayon sur une feuille !)

  • Mapper cet infini habituel sur nos feuilles vers un ordinateur : KO !

Les entiers

Ici, 0.1 + 0.2 = 0 (int.c)

Représentation des entiers positifs

  • Changement de base "simple" (TD2)
  • 15510 -> 1001 10112 (0x9B)

Exemple simple d'addition :

  • 155 + 3 = 158
  • 1001 1011 + 0000 0011 = 1001 1110

Mais le débordement (char.c) :

  • 155 + 155 = 310
  • MAIS 1001 1011 + 1001 1011 = 1 0011 0110 -> 0011 0110 = 54 (= 310 - 256)

Représentation des entiers relatifs

  • Valeur absolue signée

    • Un bit de signe puis la valeur absolue
    • Sur 1 octet : 1 bit de signe, 7 bits de valeur
    • 1001 1011 -> -27 ;-)
    • Convention d'interprétation du binaire par le type...
    • 0000 0000 -> 0, 1000 000 -> -0 => 0.1 + 0.2 == -0
    • Pas très pratique...
  • Complément à 2

    • Un seul 0 : 0000 0000
    • 1 -> 0000 0001
    • -1 -> 1111 1111
    • 127 -> 0111 1111
    • -128 -> 1000 0000
    • Pratique (et utilisé pour les types entiers) car :
      • un seul 0
      • les opérations sont identiques à celles pour un entier non signé
    • Détails ici
  • Débordement (char2.c) :

    • 127 + 1 = 128
    • 0111 1111 + 0000 0001 = 1000 0000 -> -128