diff --git a/td2.1-crypto.md b/td2.1-crypto.md
index 5e6145e..844e77f 100644
--- a/td2.1-crypto.md
+++ b/td2.1-crypto.md
@@ -53,8 +53,6 @@ Ensuite, afin de ne pas retomber dans un chiffrement par substitution simple, le
Enfin, chaque bloc clair de 3 chiffres est chiffré indépendamment par la fonction RSA : blocchiffré = blocclaire[n]. Attention, _(e,n)_ représente une clé publique, mais celle de qui ? L'utilisation de la clé _(7,1147)_ donne le chiffré `1116 751 245 1108`.
-> Attention, si vous utilisez python et non DCODE, lors de l'appel à la fonction `pow(a,b,c)` de python, n'écrivez pas de '0' en début d'entier. Par exemple, pour le bloc clair `031`, tapez `pow(31,7,1147)`. Commencer un entier par '0' le fait interpréter comme un nombre encodé en _octal_ (même principe qu'un nombre commençant par '0x' qui est interprété comme un hexadécimal).
-
> Pour calculer les exponentiations modulaires, vous pouvez utiliser python (dans l'interpréteur, tapez `pow(a,b,c)` pour obtenir ab[c]) ou [DCODE](https://www.dcode.fr/exponentiation-modulaire). Attention, lors des calculs, n'écrivez pas de '0' en début d'entier. Par exemple, pour le bloc clair `031`, tapez `pow(31,7,1147)`. Commencer un entier par '0' le fait interpréter comme un nombre encodé en _octal_ (même principe qu'un nombre commençant par '0x' qui est interprété comme un hexadécimal).